In the past 15 years, stretchable electronic circuits have emerged as a new technology in the domain of assembly, interconnections, and sensor circuit technologies. In the meantime, a wide variety of processes using many different materials have been explored in this new field. In the current contribution, we present an approach inspired by conventional rigid and flexible printed circuit board (PCB) technology. Similar to PCBs, standard packaged, rigid components are assembled on copper contact pads using lead-free solder reflow processes. Stretchability
is obtained by shaping the copper tracks as horseshoe-shaped meanders. Elastic materials, predominantly polydimethylsiloxanes, are used to embed the conductors and the components, thus serving as a circuit carrier. We describe mechanical modeling, aimed at optimizing the
build-up toward maximum mechanical reliability of the structures. Details on the production process, reliability assessment, and a number of functional demonstrators are described.
For more, read: Printed circuit board technology inspired stretchable circuits